1,708 research outputs found

    Energy correlations for a random matrix model of disordered bosons

    Full text link
    Linearizing the Heisenberg equations of motion around the ground state of an interacting quantum many-body system, one gets a time-evolution generator in the positive cone of a real symplectic Lie algebra. The presence of disorder in the physical system determines a probability measure with support on this cone. The present paper analyzes a discrete family of such measures of exponential type, and does so in an attempt to capture, by a simple random matrix model, some generic statistical features of the characteristic frequencies of disordered bosonic quasi-particle systems. The level correlation functions of the said measures are shown to be those of a determinantal process, and the kernel of the process is expressed as a sum of bi-orthogonal polynomials. While the correlations in the bulk scaling limit are in accord with sine-kernel or GUE universality, at the low-frequency end of the spectrum an unusual type of scaling behavior is found.Comment: 20 pages, 3 figures, references adde

    Frequency domain interferometer simulation with higher-order spatial modes

    Full text link
    FINESSE is a software simulation that allows to compute the optical properties of laser interferometers as they are used by the interferometric gravitational-wave detectors today. It provides a fast and versatile tool which has proven to be very useful during the design and the commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands to easily generate and plot the most common signals like, for example, power enhancement, error or control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE is the most advanced general optical simulation that uses the frequency domain. It has been designed to allow general analysis of user defined optical setups while being easy to install and easy to use.Comment: Added an example for the application of the simulation during the commisioning of the GEO 600 gravitational-wave detecto

    Demonstration of detuned dual recycling at the Garching 30m laser interferometer

    Get PDF
    Dual recycling is an advanced optical technique to enhance the signal-to-noise ratio of laser interferometric gravitational wave detectors in a limited bandwidth. To optimise the center of this band with respect to Fourier frequencies of expected gravitational wave signals detuned dual recycling has to be implemented. We demonstrated detuned dual recycling on a fully suspended 30m prototype interferometer. A control scheme that allows to tune the detector to different frequencies will be outlined. Good agreement between the experimental results and numerical simulations has been achieved.Comment: 9 page

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10(-18) m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 mu K, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of NiedersachsenAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d’Economia Hisenda i Innovacio of the Govern de les Illes BalearsScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan Foundatio

    Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams

    Get PDF
    We propose using ions and electrons of energy 1 eV–10 eV for neutralizing the charges on the non-conducting or isolated surfaces of high-sensitivity experiments. The mirror surfaces of the test masses of the laser interferometer gravitational observatory are used as an example of the implementation of this method. By alternatively directing beams of positive and negative charges towards the mirror surfaces, we ensure the neutralization of the total charge as well as the equalization of the surface charge distribution to within a few eV of the potential of the ground reference of the vacuum system. This method is compatible with operation in high vacuum, does not require measuring the potential of the mirrors and is expected not to damage sensitive optical surfaces

    A vertical inertial sensor with interferometric readout

    Get PDF
    High precision interferometers such as gravitational-wave detectors require complex seismic isolation systems in order to decouple the experiment from unwanted ground motion. Improved inertial sensors for active isolation potentially enhance the sensitivity of existing and future gravitational-wave detectors, especially below 30 Hz, and thereby increase the range of detectable astrophysical signals. This paper presents a vertical inertial sensor which senses the relative motion between an inertial test mass suspended by a blade spring and a seismically isolated platform. An interferometric readout was used which introduces low sensing noise, and preserves a large dynamic range due to fringe-counting. The expected sensitivity is comparable to other state-of-the-art interferometric inertial sensors and reaches values of 1010m/Hz10^{-10}\,\text{m}/\sqrt{\text{Hz}} at 100 mHz and 1012m/Hz10^{-12}\,\text{m}/\sqrt{\text{Hz}} at 1 Hz. The potential sensitivity improvement compared to commercial L-4C geophones is shown to be about two orders of magnitude at 10 mHz and 100 mHz and one order of magnitude at 1 Hz. The noise performance is expected to be limited by thermal noise of the inertial test mass suspension below 10 Hz. Further performance limitations of the sensor, such as tilt-to-vertical coupling from a non-perfect levelling of the test mass and nonlinearities in the interferometric readout, are also quantified and discussed

    Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities

    Get PDF
    Planning for the development of a 3rd generation global gravitational-wave detector array is a multifaceted and complex effort that will necessarily need a high level of community input. Interfacing to extant and new stakeholders in the broader scientific constituencies is necessary to keep them aware of the activities taking place in the ground-based gravitational-wave community and receive input to inform and evolve the planning. In this report, we present the approaches GWIC and gravitational-wave collaborations and projects should consider taking to engage with broader community. This report is the fifth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities (this report), and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network
    corecore